

LIBRARY CODE SECURITY ANALYSIS

ASPECT SECURITY

NOVEMBER 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-226

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2013-226 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

FRANK H. BORN WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information
 Exploitation & Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOV 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

APR 2013 – JUL 2013
4. TITLE AND SUBTITLE

LIBRARY CODE SECURITY ANALYSIS

5a. CONTRACT NUMBER
FA8750-13-C-0126

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)
Bojan Simic, Arshan Dabirsiaghi, Jeff Williams

5d. PROJECT NUMBER
INTR

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Aspect Security
9175 Guilford Road, Suite 300
Columbia, MD 21046

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2013-226

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2013-4774
Date Cleared: 14 NOV 2013

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Eighty percent of code in modern web applications comes from various third party libraries and frameworks and 26% of
the most commonly used libraries contain vulnerabilities. According to data gathered analyzing 29.8 million libraries, the
majority of library flaws are yet to be discovered and most organizations do not seem to have a process in place for
validating or analyzing the open source and third party libraries they use every day. This effort focused on creating a tool
that leverages an Interactive Application Security Testing (IAST) tool, Contrast, to identify previously unknown
vulnerabilities in Java libraries. This technology will give previously unavailable insight into the security posture of open
source libraries that many organizations often falsely assume are secure.

15. SUBJECT TERMS

Vulnerabilities, Malware, Application Security, Static Analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

22

19a. NAME OF RESPONSIBLE PERSON
FRANK H. BORN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

LIST OF FIGURES .. i

LIST OF TABLES .. i

1. EXECUTIVE SUMMARY .. 1

2. INTRODUCTION ... 2
2.1 Vulnerabilities and Hazards ... 2
2.2 Related Works .. 2
2.3 Interactive Application Security Testing .. 3

3. METHODS, ASSUMPTIONS, AND PROCEDURES ... 4
3.1 Tasks .. 4
3.2 Architecture of Fuzzing Tool .. 5
3.3 Method for Dependency Resolution .. 5
3.4 Method for Fuzzing .. 6
3.5 Method for Code Coverage ... 6
3.6 Method for Contrast Integration ... 6
3.7 Method for Result Storage and Export .. 7
3.8 Technologies .. 8
3.9 Implementation of User Interface .. 8
3.10 Extracting Methods and Classes for Fuzzing ... 9
3.11 Implementing the Fuzzer ... 10
3.12 Integration with Contrast Engine ... 11
3.13 Code Coverage and Results ... 11

4. RESULTS AND DISCUSSION .. 12
4.1 Vulnerabilities Reported .. 12
4.2 Hazards Reported .. 13
4.3 Code Coverage .. 14

5. CONCLUSIONS .. 16
5.1 Opportunities .. 16

6. REFERENCES .. 17

7. ACRONYMS .. 18

LIST OF FIGURES

Figure 1 - Process for Library Analysis ...5
Figure 2 - Example input file ...9

LIST OF TABLES

Table 1 - Overall data metrics captured by analysis ... 12
Table 2 - Vulnerabilities identified .. 12
Table 3 - Number of Hazards for Analyzed Libraries .. 13
Table 4 - Code coverage by JAR File .. 14

Approved for Public Release; Distribution Unlimited.
1

1. EXECUTIVE SUMMARY

The use of software libraries and components in critical applications is skyrocketing, and there has
been very little attention to their security. Working with Air Force Research Laboratory, researchers
from Aspect Security have created a new approach to analyzing third party Java libraries for
vulnerabilities and potential hazards. This report documents the challenges in this endeavor, the
tasks performed to create such a tool, and the results from analyzing thirty of the most common
libraries downloaded from the Central repository.

Eighty percent of code in modern web applications comes from various third party libraries and
frameworks [1]. In 2012, Aspect studied downloads of open source libraries from the Central
repository and found that 26% of those downloads were of libraries containing known vulnerabilities
[1]. When a library is vulnerable, it opens an application to an attack and could lead to an exploit
leveraging the full privilege of the application, sensitive data access, denial of service, as well as
executing transactions without authorization. According to data gathered in this earlier study,
analyzing 29.8 million libraries, the majority of library flaws are yet to be discovered [1] and most
organizations do not seem to have a process in place for validating or analyzing the open source and
third party libraries they use every day.

The primary motivation for this research is to take a closer look at the security of open source
libraries and frameworks. Where our last research focused on “known” vulnerabilities in libraries, this
research targets previously “unknown” vulnerabilities. We hope to gain the ability to automatically
determine latent vulnerabilities and hazards that are currently hidden in these libraries. Creating such
a tool to would provide greater transparency regarding these libraries’ security posture and allow
developers to make better-informed decisions when implementing a library in their software
development efforts.

Our approach to building this tool was to combine the idea of “fuzzing,” sending random data to an
interface of some sort, with an instrumentation-based vulnerability detector. For the fuzzing piece, we
created a custom fuzzing framework that overcomes some of the challenges with speed and scale
associated with fuzzing such a large Application Programming Interface (API) and complex data
structures. For the detection engine, we leveraged the work Aspect has performed previously
building Contrast [4]. Aspect has successfully used Contrast to find vulnerabilities in web applications
and this seemed to be a logical application of the technology. This approach allowed us to do “deep”
analysis of methods, including not only the code of the method itself, but also all the code invoked
within the scope of that method.

We applied this tool to the latest version of 31 of the most popular Java libraries, including web
frameworks and security libraries. These libraries are extremely widely used, and have presumably
received the most security scrutiny of any of the open source libraries. The results of the experiment
were encouraging. These libraries comprised over 110,000 methods. In them, we found a total of 19
vulnerabilities in 4 different libraries. These flaws range from weak encryption algorithms to path
traversal. In addition, we identified over 2,300 hazards – these are not full vulnerabilities but possibly
dangerous effects of methods that developers should be aware of when using a library.

While we did not achieve the code coverage that we had hoped for, we believe that this technique is
promising. We hope that this work can eventually lead to a market for third-party components that
makes it possible to take security into account when building critical systems.

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTION

Organizations have long been taking steps to improve the code quality and overall security posture of
their custom written code. However, very seldom do these organizations pay significant attention to
the security of the innumerable libraries being imported into their Java projects every day. Companies
often falsely assume that the open source libraries they are using contain secure and high quality
code due to their widespread adoption in the software development industry. In addition, the library
code used in an application does not generally get updated when a new version of that library
becomes available. If the new version contains patched vulnerabilities then the applications running
the previous version will contain further known vulnerabilities.

Libraries often have full access to each layer of a software product including business functions, data
access, and resource management. The average Java application utilizes more than 30 libraries that
typically comprise 80% of the application code. A major concern is that although a project may be
utilizing a significant number of libraries, only a small portion of each one is actually utilized by the
programmer. Given this fact, the important question is how do we know the rest of the library is not
doing something malicious? Since library use is so widespread, there exists a need to have the ability
to analyze and test the functionality. Doing this analysis on an entire library allows us to check it for
vulnerabilities and potential hazards such as denial of service.

2.1 Vulnerabilities and Hazards

This study makes a distinction between “vulnerabilities” and “hazards.” We consider a method
vulnerable if a developer is likely to call that method with data that could cause an undesirable
outcome. For example, if a developer calls the java.sql.Statement.execute() method with data that
includes input from the user, this code is considered vulnerable to a Structured Query Language
(SQL) injection attack.

A “hazard,” on the other hand, is a method that has an unexpected outcome that may or may not
cause an undesirable outcome. For example, the output from the Throwable.getMessage() call may
often include some of the user’s input. Although it is generally unknown to developers and is not
always dangerous, it is a potential hazard. Developers should know that the message from this call
is “tainted” with user input, and should be handled carefully. In this study, we focused only on
whether a method was a propagator of tainted data. There are many other hazards that it might be
possible to explore with this technique.

2.2 Related Works

There exist few previous efforts in the area of library security analysis. This is largely because most
information security efforts are in the area of identifying and mitigating vulnerabilities in custom code.
The most relevant research done on library security was the paper “Unfortunate Reality of Insecure
Libraries” by Aspect Security. This research brings to light the magnitude at which organizations use
insecure libraries every day. Aspect Security analyzed 31 of the most frequently downloaded libraries
across multiple versions and established that 26% of them had known vulnerabilities in their latest
version. This paper was a motivating factor for our research because it sparked an interest in what
other unknown vulnerabilities may exist.

There have been several efforts to do fuzzing of Java programs. One particularly interesting paper
was by Karthick Jayaraman and David Harvison in their effort to create a white box fuzzer for Java
called JFuzz [5]. The JFuzz tool is a concolic fuzzer built on top of the NASA Java PathFinder project.

Approved for Public Release; Distribution Unlimited.
3

JFuzz uses a combination of concrete and symbolic execution to do constraint solving in its effort to
do whitebox fuzzing. We believe that this tool is very powerful and useful for fuzzing smaller libraries
since the constraint solving portion can be very time consuming. In the future it may be beneficial to
use JFuzz to do the constraint-solving portion of the analysis separately. Once the constraint analysis
is completed, we can use those results as input to achieve better code coverage.

Another interesting paper on whitebox fuzzing called “Grammar-Based Whitebox Fuzzing” written by
researchers at Microsoft and Massachusetts Institute of Technology (MIT) contains great ideas on
how to achieve greater code coverage [6]. The writers take a grammar-based approach to overcome
many of the problems with whitebox testing such as complex structured inputs. This grammar-based
approach allows for much better coverage of control paths and was evaluated using with the Internet
Explorer Version 7 JavaScript interpreter program. We believe that such an approach for Java based
programs could benefit our own research efforts by increasing code coverage.

2.3 Interactive Application Security Testing

The Contrast Interactive Application Security Testing (IAST) tool developed by Aspect Security is
targeted towards not only identifying vulnerabilities in custom code but also in libraries. Reference [4]
explains how this security technology works. The application is able to track data throughout its
lifecycle inside an application and is able to analyze whether that data pathway could be used for
malicious intent. Data can be tracked as various imported libraries use and execute it. Contrast then
looks for vulnerabilities such as injection, improper encryption algorithms, and weak data validation
implementations to notify and inform an organization. We decided to use this software in our effort to
locate vulnerabilities because of its comprehensive rules engine and ability to provide meaningful
results without the static of false positives.

Approved for Public Release; Distribution Unlimited.
4

3. METHODS, ASSUMPTIONS, AND PROCEDURES

Analyzing Java libraries for security vulnerabilities and hazards required several tasks. The first was
to create a methodology for isolating all the classes and methods inside the library that needed to be
tested. The second task was to generate a fuzzer that would exercise the desired classes and
methods. The fuzzer’s function is to provide the largest possible code coverage of each library
analyzed. The third task was to add the Contrast security testing software to the fuzzing process in
order to detect vulnerabilities and hazards. These findings are based on the set of rules that allow
Contrast to locate vulnerabilities at execution time. The fourth and final task was to exercise thirty-one
of the most commonly used Java libraries and to analyze the data gathered for vulnerabilities and
hazards.

3.1 Tasks

To address task one, exercisable classes and methods were restricted to public or protected
methods inside each class. Interfaces and abstract classes were also included in the testing
whenever possible. The exercise of these classes was accomplished by searching through the
classes loaded in the JVM that implemented or extended these interfaces or abstract classes. Once
a match was found, the program attempted to instantiate the implementing class in order to exercise
its methods. In order to test all of these classes, all dependencies needed to be loaded into the class
loader. These dependencies were downloaded from the central Maven repository programmatically
using the Eclipse Aether tool for working with repositories [10]. Once the program is provided the
name of the JAR file to be exercised, all necessary dependencies are downloaded from Maven and
loaded into the classpath.

For task two, a robust fuzzer was implemented in order to get the most code coverage possible.
Because there are practically unlimited inputs to exercise the library with, we established a maximum
time period of 10 minutes for fuzzing. The fuzzer attempts to create an instance of each class chosen
to be exercised by using its various or methods that return an instance of that particular class. Once
an instance is created, it is stored in an object pool and re-used as necessary. This process was
critical to achieving higher code coverage since data loaded into the objects located in the object pool
are persisted throughout the analysis of the entire library. The resulting code coverage showed an
average of 42% of methods, 36% instructions, and 18% of lines being exercised throughout our
testing of thirty-one Java libraries.

Adding Contrast to the analysis and exercise process of the libraries allowed us to leverage the taint
propagation and security rules defined in the tool. Each parameter passed to a method that was to be
exercised was marked as tainted. In the event that the method returned a value that was tainted, our
program marked that method as potentially hazardous. A method would return a tainted value if no
validation or encoding was completed on the data according to Contrast’s rules. This also provided
us with detection capabilities for vulnerabilities such as SQL Injection, weak cryptography, path
traversal, and APIs vulnerable to denial-of-service (DOS) attacks.

To the fourth task, thirty of the most commonly downloaded Java libraries were exercised. The
results are first stored into a database and then exported to Comma Separated Values (CSV) format.
The database data included information on each method exercised: its corresponding class
information, any hazards or vulnerabilities detected, and code coverage statistics based on lines,
methods, and instructions. As part of the Contrast output, the Extensible Markup Language (XML)
data for each hazard and vulnerability detected was also included in the results. This included the
stack trace leading to each of the vulnerabilities made available for triage and validation purposes.

Approved for Public Release; Distribution Unlimited.
5

3.2 Architecture of Fuzzing Tool

The library analysis tool created in this effort is comprised of several key components. This section
will outline the role of each component created to deliver vulnerabilities and hazards contained inside
libraries. It will also describe how each component works and the technology utilized to create it.

Figure 1 - Process for Library Analysis

3.3 Method for Dependency Resolution

In order to exercise a library’s functionality, all dependencies for that library must be resolved and
loaded onto the classpath of the Java Virtual Machine. We have chosen to use a tool called Aether
[10] to programmatically retrieve all dependencies for the library to be analyzed. Each dependency
for the library was downloaded into a newly created Maven repository and then loaded onto the
classpath at runtime. This approach ensures that all dependencies are resolved when the library’s
classes and methods are being exercised. In the event that a library analyzed at a later time uses an
already downloaded dependency, the necessary file was re-used.

Approved for Public Release; Distribution Unlimited.
6

3.4 Method for Fuzzing

Once a library’s dependencies are resolved, a fuzzer is necessary to get the most code coverage.
The implemented fuzzer attempts to create instances of each class inside a library that contains
public or protected methods. Constructing these instances is a recursive process since the creation
of an instance typically requires instances of various objects specified as parameters.

The simplest iteration in creating the fuzzer was exercising classes and methods that only take
primitive types as arguments. For this task we chose to leverage a library called DummyCreator [3]
that creates instances of primitive types. For more complex fuzzing that requires instances of
complex objects, a custom solution was implemented. The fuzzer consists of several components
called “Makers” that are responsible for creating an instance of a class by either using its constructor,
methods, or class type. In the event that a class is abstract or an interface, the corresponding Maker
object will attempt to locate implementing classes and instantiate them instead. This methodology
allows us to get much larger code coverage because we are also attempting to instantiate abstract
classes and interfaces that are commonly passed as argument types.

For each method being fuzzed, multiple instances of its parameters are created and then permutated
to generate a random set of arguments. Once the various permutations are generated, each method
is executed a thousand times if there are enough permutations. The execution of these methods is
spread through fifteen separate threads that are assigned tasks to execute a particular method. This
number was chosen via trial-and-error due to performance considerations and memory consumption
observed throughout testing. It was determined that executing methods for all possible permutations
resulted in out of memory errors. The decision to limit method execution to one thousand also
demonstrated that code coverage was not affected by a significant percentage.

3.5 Method for Code Coverage

Every time a class is to be exercised, it is loaded into a component called a “Coverage Tracker”. This
component utilizes the Java Code Coverage Library (JaCoCo) [8] library for determining code
coverage. Once the class is loaded into the coverage tracker, each line of code that is exercised from
its methods is tracked. The coverage tracker also tracks information such as total methods executed,
instructions executed, and branches executed. For the purpose of this research, we are mainly
interested in the number of methods and lines of code executed in our calculation of code coverage.
Once the exercise of a class is completed, its code coverage data is stored and added to the overall
code coverage for that particular library.

3.6 Method for Contrast Integration

The Contrast tool has the capability to locate vulnerabilities inside Java Web Applications. This is
typically done by tracking data throughout execution and analyzing the code using this data. To
integrate Contrast with our tool, each class, method, and parameter needed to be tracked. Prior to
the exercise of a class’ methods, an instance of that method’s declaring class and all its arguments
were provided to the Contrast engine. The engine then tracked the data throughout the remainder of
that library’s analysis.

Whenever a method is exercised, all the data that is passed to that method is marked as tainted. If
that method returns a value, it must be checked to determine whether or not it is still tainted. In the
event that the return value contains tainted data, we mark this method as a potential hazard because
we cannot be sure that the returned value isn’t malicious. Contrast determines if the data is tainted by
applying a complex set of rules to check for events such as validation or escaping.

Approved for Public Release; Distribution Unlimited.
7

Contrast also provides vulnerability analysis for each method exercised. For example, if a method
makes a call to System.exit() or uses an ineffective encryption algorithm, Contrast will create an
output displaying the trace of the vulnerability inside the library. The vulnerability analysis provided by
the Contrast engine is “deep,” meaning that not only the code of the single method being fuzzed is
examined, but all the code within the scope of that method, including other libraries and the Java
runtime itself.

3.7 Method for Result Storage and Export

The results gathered from exercising each library are stored in three separate database tables. The
“JAR Coverage” table contains information about code coverage for each library exercised. The JAR
Coverage data includes:

 Total lines of code inside the library
 Lines of code successfully executed
 Total methods inside the library’s classes
 Number of methods successfully executed
 Total instructions inside the library’s code
 Number of instructions successfully executed
 Total branches inside the library’s code
 Number of successful branches explored

The second database table contains method execution data and is called the “Method Tracker”. This
table contains:

 Name of each method exercised
 The declaring class of each method
 Total number of execution attempts for that method
 Number of times that method was successfully executed
 Number of Hazards that method resulted in

The third and final database table is called “Hazards” and it contains all the hazards and
vulnerabilities determined by Contrast. The table contains the following data:

 Method name that resulted in the hazard
 Corresponding class name
 Rule ID that shows the rule that is associated with that hazard or vulnerability
 Name of the library that the hazard or vulnerability belongs to
 The hash value assigned by Contrast
 The XML trace of the hazard that displays the exact location of the hazard

Once all results are stored in the database, there is functionality to export the database tables into
CSV format that can then be imported into a processing tool such as Microsoft Excel.

Approved for Public Release; Distribution Unlimited.
8

3.8 Technologies

Since our effort is to analyze Java libraries for security vulnerabilities, we chose to implement our tool
with version 1.6 the Java programming language. Some of the other tools in the effort included:

 Eclipse Juno – Development environment
 Maven – Dependency management
 Aether – Managing dependencies programmatically.
 Mockito [7] – A mocking framework for Java
 Java Reflections Library [2] – Dynamic Method invocation
 Contrast Engine – Vulnerability and hazard detection
 Java DummyCreator library [3] – Creating mock objects for primitive types
 JaCoCo – Tracking code coverage
 ObjectDB – Database for storing result data
 JUnit – Unit testing of components
 Log4j – Logging
 Subversion – Version control system

3.9 Implementation of User Interface

For this project we implemented a simple command line user interface. The user simply needs to
provide a few pieces of information regarding the library they want to analyze and the program
handles the rest. This input string consists of the Group ID, Artifact ID, and version of the library to be
analyzed from Maven’s central repository. An example of this sample input string looks like
“org.apache.struts:struts-core:jar:1.3.10”. The third portion of the string specifies that we want to
download the “JAR” file for that particular library.

The command line interface also allows the user to provide a second argument. This argument is a
path to an input file that has the location of the library the user wants to analyze. This file should also
contain the paths to all dependencies that the library may depend on. A Boolean flag at the end of
each entry in the file tells the program whether or not it is a dependency or if it is to be analyzed. A
user may utilize this feature if they want to analyze a custom library that does not exist in the Maven
repository. This feature can also be used in the event that there is no network connection and Maven
cannot be used to resolve dependencies.

Approved for Public Release; Distribution Unlimited.
9

Figure 2 - Example input file

Once the user starts the program and provides the correct input, the program will attempt to
download the library as well as all its dependencies. In the event of a failure, the program will simply
stop execution. Failures can occur if the input string is not valid, the library does not exist, or there is
no network connection that can resolve the library information with Maven. If the user provided an
input file, the program will validate that all the files exist and will continue execution. When using the
input file approach, the program will assume that all dependencies are valid and that no other
dependencies are necessary.

Throughout the program’s execution the user will be given information on which method is currently
being exercised. This information consists of how many successful executions have occurred as well
as any failures encountered. Once all possible methods are executed, the program will provide three
separate CSV files as output. These files will be prefixed by the name of the library and will contain
information on hazards found, method execution details, as well as an overall summary with code
coverage data. These files will be created in the same directory as the library analysis tool.

The library analysis tool will also generate a file called report.odb. This file contains the same data as
the three CSV files but can be opened using the ObjectDB [9] explorer tool. Using this tool, the user
can write SQL queries to explore the result data if desired.

3.10 Extracting Methods and Classes for Fuzzing

Once the program reconciles the input library and all its dependencies, we had to determine exactly
what methods to exercise and how to accomplish this successfully. The first task was to load the
library we want to analyze onto the classpath along with all its dependencies. Instead of writing a
custom solution for doing runtime metadata analysis of libraries, we chose to use an open source
solution called Reflections [2].

The Reflections library contains functionality to get information such as methods, fields, constructors,
and other metadata about a JAR file. This library can take as a parameter a number of “Scanners”
that act as filters when searching for particular metadata within a JAR file. It was soon determined
that these scanners were not robust enough to retrieve all the data that was needed for our
purposes. The source code of the Reflections library was downloaded and several modifications
were made. One such modification was to add the ability to extract all methods for every class in an
entire JAR file. With the modifications, the Reflections library has the ability to take a JAR file as input
and return a list of objects that contain every method as well as what its declaring class is.

The modified version of the Reflections library was then re-compiled and imported into the library
analysis project. After extracting all the methods and classes from the JAR the user wishes to

Approved for Public Release; Distribution Unlimited.
10

analyze, we were able to choose only public and protected methods. The project would then use this
list to exercise all the methods inside it.

3.11 Implementing the Fuzzer

The initial iterations of the library analysis project consisted of only fuzzing methods that had primitive
types as parameters. The initial fuzzer would create multiple instances of primitive types and then
store them into an object pool for later use. These primitive types contained normal and boundary
values. For example, when creating instances of an integer, it would be assigned
Integer.MAX_VALUE, Integer.MIN_VALUE, 0, 1, and -1 value. Using this approach resulted in low
code coverage and it was determined that a fuzzer for more than just primitive types was necessary.

In order to increase code coverage, we implemented a fuzzer that can create complex objects.
Initially, a tool called DummyCreator [3] was used to create both primitive and complex types.
However, it was soon determined that when working with complex types, the tool often times failed
and was extremely unreliable. It was then decided to use the DummyCreator tool to only create
instances of primitive types since the values were more random. For complex types, a custom
solution was necessary.

This custom solution for fuzzing methods that take complex types consisted of the creation of objects
called “Makers”. A maker was created for constructors, methods, abstract types, interfaces, and
arrays. These various Makers would attempt to create an instance of a class by using its various
methods or constructors. If the class is abstract, the corresponding maker would attempt to locate a
subclass and recursively try to instantiate that object. In the event of an interface, the maker would
attempt to locate an implementing class somewhere on the classpath and try to instantiate that
object. Another tool that is used at a limited capacity is Mockito [7]. This tool provides the ability to
create mock objects for objects that make use of interfaces or abstract classes in the event that our
other methods are exhausted.

When an instance of a class is created, it is put into an object pool so that it can be used whenever it
is needed. The fuzzer tries to create multiple instances of each class in order to achieve better code
coverage during code exercise. Since all instances of objects were stored in a pool, the same objects
were often re-used. This re-use allowed for the modifications to the tainted object to be persisted
throughout the fuzzing process. When the fuzzer attempts to exercise a method, it retrieves the
necessary parameters from the object pool. It then creates all possible permutations of these objects
and executes the method with instances from the permutation pool.

One behavior that was observed when exercising methods with random permutations of its
parameters is a slight inconsistency in the results. This inconsistency is small enough to be negligible
but can be useful if the user wants to analyze a library over several iterations using randomized
values.

The fuzzer executes each method a maximum of 1000 times. The exact number of executions
depends on the amount of permutations created. The number of permutations depends on the
amount of the method’s arguments. For example, if the method has zero parameters, it will only be
executed once. But if it has 10 parameters, it will be executed 1000 times since executing 10!
Permutations would cause various memory and performance issues. The limit of 1000 executions
was determined after analysis of the program’s memory consumption. Since the method execution is
done in a separate thread, a maximum timeout of 30 seconds is enforced in order to prevent
deadlock. If the thread takes more than 30 seconds to exercise a method, it is interrupted and given
another task. The need for this limit was determined after extremely long execution periods for certain
methods (greater than 2 hours).

Approved for Public Release; Distribution Unlimited.
11

3.12 Integration with Contrast Engine

The fuzzer had to be integrated with the Contrast tool’s engine component in order to retrieve hazard
and vulnerability data. The Contrast engine component is able to track a piece of data throughout its
lifecycle in an application. For this project, prior to exercising a method, we tell Contrast to track all
the method’s parameters. If a method returns a value, we ask Contrast if the value returned is
tainted. If so, we mark that particular method as a hazard.

Contrast has a set of complex rules that it applies to every piece of code that is executed. These
rules check for the use of unsafe method calls and libraries. If Contrast finds the execution of unsafe
code, it reports a finding. The finding contains some very useful information such as the method, the
stack trace for the unsafe execution, and the Contrast rule that was broken.

3.13 Code Coverage and Results

Code coverage was implemented using the Java Code Coverage Library (JaCoCo). This library is
able to track the entire contents of a Java class and determine exactly what code was executed
down to the line number level. Prior to using JaCoCo, code coverage was only calculated at the
method level by manually calculating the total methods in a class and then determining which were
successfully executed.

Results from Contrast consisted of an XML string that contained the trace of any hazard/vulnerability
reported. The library analysis tool uses an object database (ObjectDB) to store all of the code
coverage and result data. This database is then queried and the results are written to three separate
CSV files.

Approved for Public Release; Distribution Unlimited.
12

4. RESULTS AND DISCUSSION

Our analysis consisted of 31 separate JAR files that contained some of the most popular web
application frameworks, security libraries, and most frequently downloaded utilities. This section will
discuss in detail the behavior observed throughout the analysis process and discuss the accuracy of
the results. The table below will outline the overview of data collected throughout our analysis.

Table 1 - Overall data metrics captured by analysis

Number of methods executed 47,279

Lines of code executed 60,090

Number of instructions executed 920,998

Branches of code explored 8,038

Total successful method executions 252,612

Total attempted method executions 457,953

Vulnerabilities reported by Contrast 18

Hazards reported by Contrast 2325

4.1 Vulnerabilities Reported

The Contrast tool that was incorporated into the library analyzer reported 19 potential vulnerabilities
inside of the 31 JAR files exercised. These findings were located in:

Table 2 - Vulnerabilities identified

JAR File Vulnerability Number of
Instances

Undisclosed JAR #8 • Banned API
• Unsafe Readline

1
1

Undisclosed JAR #25 • Bad Use of Media Access Control
(MAC)Cryptography

• Weak random number generation

13
2

Undisclosed JAR #17 • Directory Path Traversal 1
 Undisclosed JAR #29 • XML eXternal Entity (XXE) 1

The above table shows that potential vulnerabilities were reported in only 12.9% of the libraries
analyzed. This observation is definitely positive since it is less than the 26% average discovered in
Aspect’s research last year with regard to Common Vulnerabilities and Exposures (CVE’s). However,
it is important to mention that the libraries studied are the most scrutinized in existence, and only the
latest versions of these libraries were analyzed. Older versions would more than likely contain a
higher percentage of vulnerabilities.

Approved for Public Release; Distribution Unlimited.
13

4.2 Hazards Reported

Throughout our analysis, libraries were exercised in an out of context manner. This means that a
library such as Struts, was exercised simply by invoking its public and protected methods only. The
library was not part of a web application with a functioning server or valid configuration files typically
provided to a framework. The role of the “Hazard” in our results is to notify the user whether or not
they can trust the data received from a method in each library analyzed. When a class receives some
tainted data and the methods in that class are exercised, a hazard will be reported if the return value
of the method is tainted. Taint is determined by Contrast’s ability to follow the data throughout its
lifecycle and checking whether or not it has been escaped or validated in a proper way.

Contrast has the ability to track a tainted piece of data until it is garbage collected. If a piece of data is
split or merged into another object, the resulting data is marked as tainted and tracked separately.
For each hazard reported, we are able to see a trace of the data in order to better understand exactly
how the library may be using any provided input.

Analysis of 31 libraries resulted in 2325 potential hazards.

Table 3 - Number of Hazards for Analyzed Libraries

JAR File Name Number of Hazards
Undisclosed JAR #1 4
Undisclosed JAR #2 11
Undisclosed JAR #3 408
Undisclosed JAR #4 57
Undisclosed JAR #5 58
Undisclosed JAR #6 32
Undisclosed JAR #7 2
Undisclosed JAR #8 52
Undisclosed JAR #9 3
Undisclosed JAR #10 12
Undisclosed JAR #11 287
Undisclosed JAR #12 722
Undisclosed JAR #13 88
Undisclosed JAR #14 43
Undisclosed JAR #15 55
Undisclosed JAR #16 5
Undisclosed JAR #17 38
Undisclosed JAR #18 39
Undisclosed JAR #19 47
Undisclosed JAR #20 15
Undisclosed JAR #21 53
Undisclosed JAR #22 11
Undisclosed JAR #23 1
Undisclosed JAR #24 11
Undisclosed JAR #25 24
Undisclosed JAR #26 82
Undisclosed JAR #27 14

Approved for Public Release; Distribution Unlimited.
14

Undisclosed JAR #28 8
Undisclosed JAR #29 22
Undisclosed JAR #30 19
Undisclosed JAR #31 102
Total 2325

4.3 Code Coverage

After analyzing 31 JAR files, the average code coverage with respect to method executions is 42%.
However, code coverage based off of line executions, is only 18.15%. There are several factors that
could attribute to this behavior. One assumption is that the code could contain significant amounts of
boilerplate code or the general bloating of Java classes. It is also important to remember that the total
method count shown in table 2 below includes private methods that were not part of our analysis.
Line number values include non-executable code such as attribute definitions and import statements.

Table 4 - Code coverage by Jar File

Jar File Name
Successful
Methods

Total
Methods

Method
Percentage

Successful
Lines

Total
Lines

Lines
Percentage

Undisclosed JAR #1 25 203 12.32% 33 803 4.11%
Undisclosed JAR #2 431 1161 37.12% 509 1794 28.37%
Undisclosed JAR #3 15366 27105 56.69% 17733 91994 19.28%
Undisclosed JAR #4 15030 27531 54.59% 16990 92155 18.44%
Undisclosed JAR #5 253 1373 18.43% 633 5555 11.40%
Undisclosed JAR #6 1649 3673 44.90% 3607 12820 28.14%
Undisclosed JAR #7 161 1234 13.05% 384 4114 9.33%
Undisclosed JAR #8 3 236 1.27% 14 618 2.27%
Undisclosed JAR #9 29 108 26.85% 71 276 25.72%
Undisclosed JAR #10 494 2158 22.89% 1439 10800 13.32%
Undisclosed JAR #11 1190 3985 29.86% 400 1659 24.11%
Undisclosed JAR #12 4486 11606 38.65% 1029 3497 29.43%
Undisclosed JAR #13 989 2177 45.43% 2135 9716 21.97%
Undisclosed JAR #14 600 1892 31.71% 1789 11240 15.92%
Undisclosed JAR #15 203 571 35.55% 601 2308 26.04%
Undisclosed JAR #16 306 1012 30.24% 836 4804 17.40%
Undisclosed JAR #17 376 2090 17.99% 1110 11987 9.26%
Undisclosed JAR #18 653 2382 27.41% 1653 9218 17.93%
Undisclosed JAR #19 536 1450 36.97% 1338 7387 18.11%
Undisclosed JAR #20 1043 2934 35.55% 2005 10734 18.68%
Undisclosed JAR #21 517 3815 13.55% 1004 13743 7.31%
Undisclosed JAR #22 13 87 14.94% 32 550 5.82%
Undisclosed JAR #23 1 2 50.00% 1 8 12.50%
Undisclosed JAR #24 88 220 40.00% 13 310 4.19%
Undisclosed JAR #25 178 388 45.88% 324 1664 19.47%
Undisclosed JAR #26 456 2245 20.31% 964 8213 11.74%

Approved for Public Release; Distribution Unlimited.
15

Undisclosed JAR #27 400 611 65.47% 1314 3088 42.55%
Undisclosed JAR #28 20 136 14.71% 87 683 12.74%
Undisclosed JAR #29 318 1062 29.94% 966 5394 17.91%
Undisclosed JAR #30 403 1049 38.42% 1076 3935 27.34%
Undisclosed JAR #31 1062 5881 18.06% 0 0 0.00%
Totals 47279 110377 42.83% 60090 331067 18.15%

After analyzing the code coverage for each Jar file, we determined that web application frameworks
such as Stripes, Java Server Faces (JSF), and Struts showed some of the higher code coverage
percentages. For some of the libraries such as Xerces, the JaCoCo tool used to measure code
coverage failed to track the amount of lines in the library. This fact could potentially skew the
averages to some degree.

The lack of higher code coverage can be attributed to several factors:

 The fuzzer is unable to instantiate contextual objects. Many frameworks and libraries depend
on contextual objects that contain session information and contextual data. Since we are
unable to create these objects programmatically to fit the context of the individual library,
code coverage suffers.

 The fuzzer does not have access to various properties and input files necessary for many
libraries to operate. Several libraries such as Struts or Spring depend on XML input files to
provide critical mapping information. The fuzzer does not have access to these files and is
unable to generate them at runtime.

 The fuzzer cannot instantiate many web specific objects. When instantiating objects such as
HttpRequest, often times the randomly generated data passed to the constructors is incorrect
and results in an invalid object.

 Lack of memory and computing power. Since there are potentially millions of permutations
generated of each set of arguments passed to a constructor or method. Executing each one
of these permutations became impossible due to constant out of memory issues. Therefore it
was decided to only run a maximum of 1000 randomly chosen permutations per method.

Code coverage data was also tracked in terms of instructions and branches. The average
percentage of instructions covered was 36.72 and only 6.30 in terms of branches.

Approved for Public Release; Distribution Unlimited.
16

5. CONCLUSIONS

A previous study done by Aspect Security researchers has determined that 26% of library downloads
have known vulnerabilities. Static and dynamic analysis tools lack the capability to exercise the
majority of code in libraries referenced by an application even though this is often 80% of the overall
source. Using a custom developed fuzzer along with Contrast, we have created a program that
analyzes the security of Java libraries. This program is able to exercise a significant portion of a
library’s source code.

The development of this tool required the use of several technologies for fuzzing, measuring code
coverage, as well as memory and performance management. The resulting program provides the
user with valuable hazard and vulnerability data that may have previously been unknown. We have
analyzed thirty Java libraries and uncovered 2325 potential hazards and 19 possible vulnerabilities.
This program can be used to help an organization determine the security posture of the libraries they
use every day.

We anticipate that there is much left to do in the effort to ensure the use of secure libraries. Our
program is able to provide users with a previously unattainable visibility into a library’s security
posture. With increasing focus on library security, we hope to continue our research to give
programmers the ability to make educated decisions when developing software.

5.1 Opportunities

We believe encouraging more secure libraries and components in the software marketplace is one of
the most critical cyber security challenges there is. Although in our research significant progress was
made, there is much more work to be done in the effort to analyze Java libraries for security. The first
task would be to collect more data by analyzing other popular libraries. It would also be extremely
important to analyze previous versions of libraries. The data collected by analyzing older versions of
libraries would tell organizations whether or not their legacy applications are at risk.

In order to provide more useful data and better code coverage of libraries, it would be necessary to
improve our fuzzing technology. To improve coverage, the fuzzer would need to provide contextual
information that libraries require. This includes various property and configuration files as well as
mocking of objects that have valid data. If we are able to provide libraries with valid objects that are
necessary for proper execution, it would ensure greater code coverage and provide us with the ability
to discover more vulnerabilities.

Performance and memory management is another area in need of improvement. Code coverage
would improve with the ability to execute methods with more permutations of mocked objects.
Currently we limit a method’s execution to 1000 times with permutations of only a few objects due to
performance reasons. This task could be accomplished improving memory management as well as
distributing the programs execution over multiple CPU’s.

For more accurate fuzzing, the creation of a Genetic Algorithm (GA) could ensure much greater code
coverage. The GA would learn which objects are successful in instantiating a class or executing a
method. This improvement in accuracy with the fuzzer would greatly increase both performance and
code coverage. Valuable memory space would be saved by garbage collecting all unnecessarily
created instances in the object pool and freeing up space for other more useful data. Performance
would also increase due to the GA being able to learn when a method has been fully executed.
Learning when a method’s branches and instructions have been explored would allow us to limit the
executions count of these methods and free up threads to run queued tasks.

Approved for Public Release; Distribution Unlimited.
17

6. REFERENCES

[1] Aspect Security - The Unfortunate Reality of Insecure Libraries

https://www.aspectsecurity.com/uploads/downloads/2012/03/Aspect-Security-The-
Unfortunate-Reality-of-Insecure-Libraries.pdf

[2] Reflections – Java Runtime Metadata Analysis

http://code.google.com/p/reflections

[3] DummyCreator - A Java-Library to Create Instances of Any Class

http://code.google.com/p/dummycreator

[4] Contrast – Security for JavaEE That Just Works

https://www.aspectsecurity.com/wp-content/plugins/download-monitor/download.php?id=154

[5] JFuzz – A Concolif Whitebox Fuzzer for Java

 http://people.csail.mit.edu/vganesh/Publications_files/vg-NFM2009-jFuzz.pdf

[6] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In PLDI,

pages 206–215, 2008.

[7] Mockito – A Mocking Framework for Java

http://code.google.com/p/mockito

[8] JaCoCo code coverage library – Java Code Coverage Library

 http://www.eclemma.org/jacoco/trunk

[9] ObjectDB – Object Database for Java

 http://www.objectdb.com/java/jpa/tool/explorer

[10] Aether – Repository API for Maven

 http://www.sonatype.org/aether

Approved for Public Release; Distribution Unlimited.
18

7. ACRONYMS

API Application Programming Interface
CSV Comma Separated Values
CVE Common Vulnerabilities and Exposures
DB Database
DOS Denial of Service attack
GA Genetic Algorithm
IAST Interactive Application Security Testing
IE7 Internet Explorer 7
JaCoCo Java Code Coverage Library
JAR Java Archive
JSF Java Server Faces
MAC Media Access Control
MIT Massachusetts Institute of Technology
SQL Structured Query Language
XML Extensible Markup Language
XML Extensible Markup Language
XXE XML External Entity

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. EXECUTIVE Summary
	2. Introduction
	2.1 Vulnerabilities and Hazards
	2.2 Related Works
	2.3 Interactive Application Security Testing

	3. Methods, Assumptions, and Procedures
	3.1 Tasks
	3.2 Architecture of Fuzzing Tool
	3.3 Method for Dependency Resolution
	3.4 Method for Fuzzing
	3.5 Method for Code Coverage
	3.6 Method for Contrast Integration
	3.7 Method for Result Storage and Export
	3.8 Technologies
	3.9 Implementation of User Interface
	3.10 Extracting Methods and Classes for Fuzzing
	3.11 Implementing the Fuzzer
	3.12 Integration with Contrast Engine
	3.13 Code Coverage and Results

	4. Results and Discussion
	4.1 Vulnerabilities Reported
	4.2 Hazards Reported
	4.3 Code Coverage

	5. Conclusions
	5.1 Opportunities

	6. References
	7. ACRONYMS

